35 research outputs found

    Diagnosis of Indian Visceral Leishmaniasis by Nucleic Acid Detection Using PCR

    Get PDF
    Background: PCR based diagnosis for Visceral Leishmaniasis (VL), despite numerous published primers, remains far from being applied in the field. The present study was planned to design a Leishmania specific diagnostic assay and to evaluate its sensitivity and specificity on a sample size, which to the best of our knowledge is the largest ever screened in one study. Methods: Leishmania specific primers were developed using 18S rRNA gene and their sensitivity was evaluated on 500 parasitologically confirmed patients with VL and 25 Post Kala-azar Dermal Leishmaniasis (PKDL) patients. Specificity was calculated on 250 healthy endemic controls, 250 healthy non endemic controls and 250 non leishmanial diseases like malaria. Results: Our PCR assay had a sensitivity of 87.8 % (95%CI: 84.1–89.8) using 200 mL of patient’s peripheral-blood. Specificity was absolute in non-endemic healthy controls and in subjects with different diseases while in endemic controls it was 84% (95%CI: 78.9–88.0). Its overall specificity was 94.6 % (95%CI-92.8–96.1). Conclusions: The PCR assay developed is sensitive enough to detect the 18S rRNA gene in an amount equivalent to a single parasite or less in a one million human cell environment. The high sensitivity of this PCR diagnostic test with relatively noninvasive peripheral blood sampling method opens up the possibility of its deployment in field for the routine diagnosis o

    The intersection of video capsule endoscopy and artificial intelligence: addressing unique challenges using machine learning

    Full text link
    Introduction: Technical burdens and time-intensive review processes limit the practical utility of video capsule endoscopy (VCE). Artificial intelligence (AI) is poised to address these limitations, but the intersection of AI and VCE reveals challenges that must first be overcome. We identified five challenges to address. Challenge #1: VCE data are stochastic and contains significant artifact. Challenge #2: VCE interpretation is cost-intensive. Challenge #3: VCE data are inherently imbalanced. Challenge #4: Existing VCE AIMLT are computationally cumbersome. Challenge #5: Clinicians are hesitant to accept AIMLT that cannot explain their process. Methods: An anatomic landmark detection model was used to test the application of convolutional neural networks (CNNs) to the task of classifying VCE data. We also created a tool that assists in expert annotation of VCE data. We then created more elaborate models using different approaches including a multi-frame approach, a CNN based on graph representation, and a few-shot approach based on meta-learning. Results: When used on full-length VCE footage, CNNs accurately identified anatomic landmarks (99.1%), with gradient weighted-class activation mapping showing the parts of each frame that the CNN used to make its decision. The graph CNN with weakly supervised learning (accuracy 89.9%, sensitivity of 91.1%), the few-shot model (accuracy 90.8%, precision 91.4%, sensitivity 90.9%), and the multi-frame model (accuracy 97.5%, precision 91.5%, sensitivity 94.8%) performed well. Discussion: Each of these five challenges is addressed, in part, by one of our AI-based models. Our goal of producing high performance using lightweight models that aim to improve clinician confidence was achieved

    Improving Multimodal Interactive Agents with Reinforcement Learning from Human Feedback

    Full text link
    An important goal in artificial intelligence is to create agents that can both interact naturally with humans and learn from their feedback. Here we demonstrate how to use reinforcement learning from human feedback (RLHF) to improve upon simulated, embodied agents trained to a base level of competency with imitation learning. First, we collected data of humans interacting with agents in a simulated 3D world. We then asked annotators to record moments where they believed that agents either progressed toward or regressed from their human-instructed goal. Using this annotation data we leveraged a novel method - which we call "Inter-temporal Bradley-Terry" (IBT) modelling - to build a reward model that captures human judgments. Agents trained to optimise rewards delivered from IBT reward models improved with respect to all of our metrics, including subsequent human judgment during live interactions with agents. Altogether our results demonstrate how one can successfully leverage human judgments to improve agent behaviour, allowing us to use reinforcement learning in complex, embodied domains without programmatic reward functions. Videos of agent behaviour may be found at https://youtu.be/v_Z9F2_eKk4

    On foveation of deep neural networks

    No full text
    This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (pages 61-63).The human ability to recognize objects is impaired when the object is not shown in full. "Minimal images" are the smallest regions of an image that remain recognizable for humans. [26] show that a slight modification of the location and size of the visible region of the minimal image produces a sharp drop in human recognition accuracy. In this paper, we demonstrate that such drops in accuracy due to changes of the visible region are a common phenomenon between humans and existing state-of- the-art convolutional neural networks (CNNs), and are much more prominent in CNNs. We found many cases where CNNs classified one region correctly and the other incorrectly, though they only differed by one row or column of pixels, and were often bigger than the average human minimal image size. We show that this phenomenon is independent from previous works that have reported lack of invariance to minor modifications in object location in CNNs. Our results thus reveal a new failure mode of CNNs that also affects humans to a lesser degree. They expose how fragile CNN recognition ability is for natural images even without synthetic adversarial patterns being introduced. This opens potential for CNN robustness in natural images to be brought to the human level by taking inspiration from human robustness methods. One of these is eccentricity dependence, a model of human focus in which attention to the visual input degrades proportional to distance from the focal point [7]. We demonstrate that applying the "inverted pyramid" eccentricity method, a multi-scale input transformation, makes CNNs more robust to useless background features than a standard raw-image input. Our results also find that using the inverted pyramid method generally reduces useless background pixels, therefore reducing required training data.by Sanjana Srivastava.M. Eng.M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienc

    The Data Efficiency of Deep Learning Is Degraded by Unnecessary Input Dimensions

    No full text
    Biological learning systems are outstanding in their ability to learn from limited training data compared to the most successful learning machines, i.e., Deep Neural Networks (DNNs). What are the key aspects that underlie this data efficiency gap is an unresolved question at the core of biological and artificial intelligence. We hypothesize that one important aspect is that biological systems rely on mechanisms such as foveations in order to reduce unnecessary input dimensions for the task at hand, e.g., background in object recognition, while state-of-the-art DNNs do not. Datasets to train DNNs often contain such unnecessary input dimensions, and these lead to more trainable parameters. Yet, it is not clear whether this affects the DNNs' data efficiency because DNNs are robust to increasing the number of parameters in the hidden layers, and it is uncertain whether this holds true for the input layer. In this paper, we investigate the impact of unnecessary input dimensions on the DNNs data efficiency, namely, the amount of examples needed to achieve certain generalization performance. Our results show that unnecessary input dimensions that are task-unrelated substantially degrade data efficiency. This highlights the need for mechanisms that remove task-unrelated dimensions, such as foveation for image classification, in order to enable data efficiency gains

    Sparse doubly-selective channel estimation techniques for OSTBC MIMO-OFDM systems: a hierarchical Bayesian Kalman filter based approach

    No full text
    Hierarchical Bayesian Kalman filter (HBKF) based schemes are conceived for doubly-selective sparse channel estimation in orthogonal space-time block coded (OSTBC) multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) wireless systems. Initially, a pilot based multiple measurement vector (MMV) model is formulated for estimating the OSTBC MIMO-OFDM channel. This is followed by the development of a low-complexity, online pilot-based HBKF (P-HBKF) scheme for tracking the sparse time-varying frequency-selective channel. The salient advantages of the proposed P-HBKF technique are that it requires significantly lower number of pilot subcarriers, while also exploiting the inherent sparsity of the wireless channel. Subsequently, data detection is also incorporated in the proposed framework, leading to the development of a procedure for joint sparse doubly-selective channel estimation and symbol detection. Recursive Bayesian Cramér-Rao bounds and closed form expressions are also obtained for the asymptotic mean square error (MSE) based on the solution of the Riccati equation for the KF for benchmarking the performance. Simulation results are presented for validating the theoretical bounds and for comparing the performance of the proposed and existing techniques
    corecore